Debugging and Analytics
Overview
Artos supports integrations with Debugging and Analytics tools to provide a comprehensive method for monitoring, debugging, and optimizing your Artos implementations. This includes discrete component testing, iterative development approaches, granular analytics, and performance optimization capabilities.What are Debugging and Analytics?
Debugging and Analytics in Artos provide:- Discrete Component Testing: Test individual components in isolation
- Iterative Development: Develop and refine workflows incrementally
- Performance Monitoring: Track execution times, success rates, and resource usage
- Quality Metrics: Monitor accuracy, consistency, and reliability
- Optimization Insights: Identify bottlenecks and improvement opportunities
Key Benefits
- Granular Debugging: Test and debug individual components independently
- Performance Insights: Understand execution patterns and optimize accordingly
- Quality Assurance: Monitor and improve output quality over time
- Iterative Improvement: Develop workflows incrementally with feedback
- Custom Metrics: Define and track metrics specific to your use cases
Debugging Capabilities
Discrete Component Testing
Test individual components in isolation to identify issues and optimize performance.Component Test Framework
Copy
from artos import ComponentTester, TestCase
class ConnectorTestSuite:
def __init__(self, api_key):
self.tester = ComponentTester(api_key)
def test_table_processor_connector(self):
"""Test table processor connector in isolation"""
test_case = TestCase(
name="Table Processor Connector Test",
component_type="connector",
component_id="table_processor_connector",
input_data={
"data": [
{"id": 1, "name": "Item 1", "value": 100},
{"id": 2, "name": "Item 2", "value": 200}
],
"format": "json"
},
expected_output={
"processed_rows": 2,
"validation_passed": True,
"output_format": "structured"
}
)
result = self.tester.run_test(test_case)
return result
def test_content_optimizer(self):
"""Test content optimizer component"""
test_case = TestCase(
name="Content Optimizer Test",
component_type="post_processor",
component_id="content_optimizer",
input_data={
"content": "This is a very long and verbose piece of content that needs optimization.",
"target_length": "concise",
"style_guide": "professional"
},
expected_output={
"length_reduction": ">20%",
"readability_improvement": ">10%",
"style_compliance": True
}
)
result = self.tester.run_test(test_case)
return result
# Usage
test_suite = ConnectorTestSuite("your_api_key")
table_result = test_suite.test_table_processor_connector()
content_result = test_suite.test_content_optimizer()
print(f"Table processor test: {table_result.status}")
print(f"Content optimizer test: {content_result.status}")
Interactive Debugging
Copy
from artos import Debugger
class InteractiveDebugger:
def __init__(self, api_key):
self.debugger = Debugger(api_key)
def debug_workflow_step(self, workflow_id, step_id, input_data):
"""Debug a specific workflow step interactively"""
debug_session = self.debugger.start_session(
workflow_id=workflow_id,
step_id=step_id,
input_data=input_data
)
# Set breakpoints
debug_session.set_breakpoint("data_validation")
debug_session.set_breakpoint("content_processing")
# Start debugging
result = debug_session.run()
# Inspect intermediate results
for breakpoint in debug_session.breakpoints:
print(f"Breakpoint {breakpoint.name}:")
print(f" Input: {breakpoint.input_data}")
print(f" Output: {breakpoint.output_data}")
print(f" Variables: {breakpoint.variables}")
return result
def step_through_execution(self, execution_id):
"""Step through execution step by step"""
debug_session = self.debugger.attach_to_execution(execution_id)
while debug_session.has_next_step():
step_result = debug_session.next_step()
print(f"Step: {step_result.step_name}")
print(f" Duration: {step_result.duration}")
print(f" Status: {step_result.status}")
print(f" Output: {step_result.output}")
if step_result.has_errors():
print(f" Errors: {step_result.errors}")
return debug_session.get_final_result()
# Usage
debugger = InteractiveDebugger("your_api_key")
# Debug specific step
result = debugger.debug_workflow_step(
workflow_id="workflow_123",
step_id="data_validator",
input_data={"test_data": "sample"}
)
# Step through execution
final_result = debugger.step_through_execution("execution_456")
Iterative Development
Develop workflows incrementally with immediate feedback and testing.Development Workbench
Copy
from artos import DevelopmentWorkbench
class WorkflowDeveloper:
def __init__(self, api_key):
self.workbench = DevelopmentWorkbench(api_key)
def create_prototype(self, workflow_config):
"""Create a prototype workflow for testing"""
prototype = self.workbench.create_prototype(
name=workflow_config["name"],
description=workflow_config["description"],
connectors=workflow_config["connectors"],
post_processing=workflow_config["post_processing"]
)
return prototype
def test_prototype(self, prototype_id, test_data):
"""Test prototype with sample data"""
test_result = self.workbench.test_prototype(
prototype_id=prototype_id,
test_data=test_data,
metrics=["accuracy", "performance", "quality"]
)
return test_result
def iterate_on_prototype(self, prototype_id, feedback):
"""Iterate on prototype based on feedback"""
updated_prototype = self.workbench.iterate_prototype(
prototype_id=prototype_id,
feedback=feedback,
auto_optimize=True
)
return updated_prototype
def promote_to_production(self, prototype_id):
"""Promote tested prototype to production"""
production_workflow = self.workbench.promote_prototype(
prototype_id=prototype_id,
environment="production"
)
return production_workflow
# Usage
developer = WorkflowDeveloper("your_api_key")
# Create prototype
prototype = developer.create_prototype({
"name": "Data Processing Pipeline",
"description": "Process and validate tabular data",
"connectors": ["table_processor_connector"],
"post_processing": ["data_validator", "content_optimizer"]
})
# Test prototype
test_result = developer.test_prototype(prototype.id, {
"sample_data": "test_data_here"
})
# Iterate based on results
if test_result.accuracy < 0.9:
updated_prototype = developer.iterate_on_prototype(prototype.id, {
"accuracy": "needs_improvement",
"suggestions": ["add_validation_rules", "optimize_processing"]
})
# Promote to production when ready
production_workflow = developer.promote_to_production(prototype.id)
Analytics API Endpoints
Performance Metrics
Get Component Performance Metrics
Copy
curl -X GET https://api.artosai.com/analytics/performance \
-H "Authorization: Bearer YOUR_API_KEY" \
-G \
-d "component_type=connector" \
-d "component_id=table_processor_connector" \
-d "start_date=2024-01-01" \
-d "end_date=2024-01-15" \
-d "granularity=hour"
Copy
{
"metrics": {
"component_id": "table_processor_connector",
"component_type": "connector",
"period": {
"start": "2024-01-01T00:00:00Z",
"end": "2024-01-15T23:59:59Z",
"granularity": "hour"
},
"performance_data": [
{
"timestamp": "2024-01-01T00:00:00Z",
"execution_count": 150,
"avg_execution_time": 2.3,
"p95_execution_time": 4.1,
"p99_execution_time": 6.8,
"success_rate": 0.98,
"error_rate": 0.02,
"throughput": 65.2
}
],
"summary": {
"total_executions": 3600,
"avg_execution_time": 2.1,
"overall_success_rate": 0.97,
"peak_throughput": 120.5,
"bottlenecks": [
{
"timestamp": "2024-01-10T14:00:00Z",
"issue": "high_latency",
"duration": "2h",
"impact": "medium"
}
]
}
}
}
Get Success Rate Tracking
Copy
curl -X GET https://api.artosai.com/analytics/success-rates \
-H "Authorization: Bearer YOUR_API_KEY" \
-G \
-d "workflow_id=workflow_123" \
-d "time_window=7d" \
-d "group_by=step"
Copy
{
"success_rates": {
"workflow_id": "workflow_123",
"time_window": "7d",
"group_by": "step",
"data": [
{
"step_id": "data_validator",
"step_name": "Data Validation",
"total_executions": 1200,
"successful_executions": 1180,
"failed_executions": 20,
"success_rate": 0.983,
"avg_execution_time": 1.2,
"common_errors": [
{
"error_type": "validation_failed",
"count": 15,
"percentage": 0.0125
}
]
},
{
"step_id": "content_optimizer",
"step_name": "Content Optimization",
"total_executions": 1180,
"successful_executions": 1165,
"failed_executions": 15,
"success_rate": 0.987,
"avg_execution_time": 3.1,
"common_errors": [
{
"error_type": "timeout",
"count": 10,
"percentage": 0.0085
}
]
}
],
"overall_success_rate": 0.971,
"trend": "improving",
"recommendations": [
{
"step_id": "data_validator",
"recommendation": "Add input validation to reduce validation failures",
"priority": "medium"
}
]
}
}
Get Usage Statistics
Copy
curl -X GET https://api.artosai.com/analytics/usage \
-H "Authorization: Bearer YOUR_API_KEY" \
-G \
-d "start_date=2024-01-01" \
-d "end_date=2024-01-31" \
-d "group_by=day"
Copy
{
"usage_statistics": {
"period": {
"start": "2024-01-01T00:00:00Z",
"end": "2024-01-31T23:59:59Z",
"group_by": "day"
},
"daily_usage": [
{
"date": "2024-01-01",
"total_executions": 1500,
"unique_workflows": 25,
"total_processing_time": 3600,
"data_processed": "2.5GB",
"api_calls": 4500,
"cost_estimate": 125.50
}
],
"summary": {
"total_executions": 46500,
"avg_daily_executions": 1500,
"peak_daily_executions": 2200,
"total_processing_time": "31.5h",
"total_data_processed": "75GB",
"total_cost": 3892.50,
"most_used_workflows": [
{
"workflow_id": "workflow_123",
"name": "Data Processing Pipeline",
"execution_count": 12000,
"percentage": 25.8
}
],
"usage_trends": {
"executions": "increasing",
"processing_time": "stable",
"cost": "increasing"
}
}
}
}
Define Custom Metrics
Copy
curl -X POST https://api.artosai.com/analytics/custom-metrics \
-H "Authorization: Bearer YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"name": "business_rule_compliance",
"description": "Track compliance with business rules",
"type": "boolean",
"calculation": {
"method": "custom_function",
"function": "check_business_rules",
"parameters": {
"required_fields": ["customer_id", "order_amount"],
"validation_rules": {
"min_order_amount": 10.00,
"max_order_amount": 10000.00
}
}
},
"targets": {
"minimum": 0.95,
"optimal": 0.98
},
"alerting": {
"enabled": true,
"threshold": 0.90,
"notification_channels": ["email", "slack"]
}
}'
Copy
{
"custom_metric": {
"id": "metric_abc123",
"name": "business_rule_compliance",
"description": "Track compliance with business rules",
"type": "boolean",
"status": "active",
"created_at": "2024-01-15T10:30:00Z",
"calculation": {
"method": "custom_function",
"function": "check_business_rules",
"parameters": {
"required_fields": ["customer_id", "order_amount"],
"validation_rules": {
"min_order_amount": 10.00,
"max_order_amount": 10000.00
}
}
},
"targets": {
"minimum": 0.95,
"optimal": 0.98
},
"alerting": {
"enabled": true,
"threshold": 0.90,
"notification_channels": ["email", "slack"]
}
}
}
SDK Methods
Analytics Client
Copy
from artos import AnalyticsClient
class AnalyticsManager:
def __init__(self, api_key):
self.client = AnalyticsClient(api_key)
def get_performance_metrics(self, component_id, start_date, end_date, granularity="hour"):
"""Get performance metrics for a component"""
return self.client.get_performance_metrics(
component_id=component_id,
start_date=start_date,
end_date=end_date,
granularity=granularity
)
def get_success_rates(self, workflow_id, time_window="7d", group_by="step"):
"""Get success rates for a workflow"""
return self.client.get_success_rates(
workflow_id=workflow_id,
time_window=time_window,
group_by=group_by
)
def get_usage_statistics(self, start_date, end_date, group_by="day"):
"""Get usage statistics"""
return self.client.get_usage_statistics(
start_date=start_date,
end_date=end_date,
group_by=group_by
)
def define_custom_metric(self, metric_config):
"""Define a custom metric"""
return self.client.define_custom_metric(metric_config)
def get_custom_metric_data(self, metric_id, start_date, end_date):
"""Get data for a custom metric"""
return self.client.get_custom_metric_data(
metric_id=metric_id,
start_date=start_date,
end_date=end_date
)
# Usage
analytics = AnalyticsManager("your_api_key")
# Get performance metrics
performance = analytics.get_performance_metrics(
component_id="table_processor_connector",
start_date="2024-01-01",
end_date="2024-01-15"
)
# Get success rates
success_rates = analytics.get_success_rates(
workflow_id="workflow_123",
time_window="7d"
)
# Define custom metric
custom_metric = analytics.define_custom_metric({
"name": "data_quality_score",
"type": "score",
"calculation": {
"method": "weighted_average",
"weights": {
"completeness": 0.3,
"accuracy": 0.4,
"consistency": 0.3
}
}
})
Debugging Client
Copy
from artos import DebuggingClient
class DebuggingManager:
def __init__(self, api_key):
self.client = DebuggingClient(api_key)
def test_component(self, component_id, input_data, expected_output=None):
"""Test a component in isolation"""
return self.client.test_component(
component_id=component_id,
input_data=input_data,
expected_output=expected_output
)
def debug_execution(self, execution_id, breakpoints=None):
"""Debug an execution with optional breakpoints"""
return self.client.debug_execution(
execution_id=execution_id,
breakpoints=breakpoints or []
)
def step_through_execution(self, execution_id):
"""Step through execution step by step"""
return self.client.step_through_execution(execution_id)
def get_execution_trace(self, execution_id):
"""Get detailed execution trace"""
return self.client.get_execution_trace(execution_id)
def compare_executions(self, execution_ids):
"""Compare multiple executions"""
return self.client.compare_executions(execution_ids)
# Usage
debugger = DebuggingManager("your_api_key")
# Test component
test_result = debugger.test_component(
component_id="data_validator",
input_data={"test_data": "sample"},
expected_output={"valid": True}
)
# Debug execution
debug_result = debugger.debug_execution(
execution_id="execution_123",
breakpoints=["data_validation", "content_processing"]
)
# Get execution trace
trace = debugger.get_execution_trace("execution_123")
Monitoring and Optimization
Real-time Monitoring
Copy
from artos import MonitoringClient
import asyncio
class RealTimeMonitor:
def __init__(self, api_key):
self.client = MonitoringClient(api_key)
async def monitor_executions(self, workflow_id):
"""Monitor executions in real-time"""
async for execution_update in self.client.monitor_executions(workflow_id):
print(f"Execution {execution_update.execution_id}: {execution_update.status}")
if execution_update.status == "completed":
print(f" Result: {execution_update.result}")
print(f" Duration: {execution_update.duration}")
print(f" Quality Score: {execution_update.quality_score}")
elif execution_update.status == "failed":
print(f" Error: {execution_update.error}")
async def monitor_performance(self, component_id):
"""Monitor component performance in real-time"""
async for performance_update in self.client.monitor_performance(component_id):
print(f"Performance Update for {component_id}:")
print(f" Execution Time: {performance_update.avg_execution_time}")
print(f" Success Rate: {performance_update.success_rate}")
print(f" Throughput: {performance_update.throughput}")
def set_alerts(self, alert_config):
"""Set up performance alerts"""
return self.client.set_alerts(alert_config)
# Usage
monitor = RealTimeMonitor("your_api_key")
# Monitor executions
async def main():
await monitor.monitor_executions("workflow_123")
await monitor.monitor_performance("table_processor_connector")
# Set alerts
alerts = monitor.set_alerts({
"success_rate_threshold": 0.95,
"execution_time_threshold": 10.0,
"notification_channels": ["email", "slack"]
})
# Run monitoring
asyncio.run(main())
Performance Optimization
Copy
from artos import OptimizationClient
class PerformanceOptimizer:
def __init__(self, api_key):
self.client = OptimizationClient(api_key)
def analyze_performance(self, workflow_id, time_range="7d"):
"""Analyze workflow performance and identify bottlenecks"""
analysis = self.client.analyze_performance(
workflow_id=workflow_id,
time_range=time_range
)
print("Performance Analysis:")
print(f" Overall Success Rate: {analysis.overall_success_rate}")
print(f" Average Execution Time: {analysis.avg_execution_time}")
print(f" Bottlenecks: {analysis.bottlenecks}")
print(f" Recommendations: {analysis.recommendations}")
return analysis
def optimize_workflow(self, workflow_id, optimization_target="performance"):
"""Optimize workflow based on analysis"""
optimization = self.client.optimize_workflow(
workflow_id=workflow_id,
target=optimization_target
)
print("Optimization Results:")
print(f" Original Performance: {optimization.original_metrics}")
print(f" Optimized Performance: {optimization.optimized_metrics}")
print(f" Improvements: {optimization.improvements}")
return optimization
def a_b_test_workflows(self, workflow_a_id, workflow_b_id, test_duration="1d"):
"""A/B test two workflow versions"""
test_result = self.client.a_b_test_workflows(
workflow_a_id=workflow_a_id,
workflow_b_id=workflow_b_id,
duration=test_duration
)
print("A/B Test Results:")
print(f" Workflow A Performance: {test_result.workflow_a_metrics}")
print(f" Workflow B Performance: {test_result.workflow_b_metrics}")
print(f" Winner: {test_result.winner}")
print(f" Confidence: {test_result.confidence}")
return test_result
# Usage
optimizer = PerformanceOptimizer("your_api_key")
# Analyze performance
analysis = optimizer.analyze_performance("workflow_123")
# Optimize workflow
optimization = optimizer.optimize_workflow("workflow_123", "performance")
# A/B test workflows
test_result = optimizer.a_b_test_workflows("workflow_123", "workflow_456")
Advanced Customization
Process Modification
Copy
from artos import ProcessModifier
class ProcessCustomizer:
def __init__(self, api_key):
self.modifier = ProcessModifier(api_key)
def modify_workflow_process(self, workflow_id, modifications):
"""Modify workflow process dynamically"""
modified_workflow = self.modifier.modify_workflow(
workflow_id=workflow_id,
modifications=modifications
)
return modified_workflow
def add_custom_step(self, workflow_id, step_config):
"""Add custom processing step to workflow"""
return self.modifier.add_step(
workflow_id=workflow_id,
step_config=step_config
)
def replace_component(self, workflow_id, old_component_id, new_component_id):
"""Replace component in workflow"""
return self.modifier.replace_component(
workflow_id=workflow_id,
old_component_id=old_component_id,
new_component_id=new_component_id
)
def optimize_component_config(self, component_id, optimization_params):
"""Optimize component configuration"""
return self.modifier.optimize_component(
component_id=component_id,
optimization_params=optimization_params
)
# Usage
customizer = ProcessCustomizer("your_api_key")
# Modify workflow process
modified_workflow = customizer.modify_workflow_process("workflow_123", {
"add_validation_step": True,
"optimize_processing_order": True,
"enable_parallel_processing": True
})
# Add custom step
custom_step = customizer.add_custom_step("workflow_123", {
"name": "Custom Data Transformer",
"type": "custom_processor",
"configuration": {
"transformation_rules": {
"normalize_data": True,
"remove_outliers": True
}
}
})
Custom Model Variant Development
Copy
from artos import ModelVariantDeveloper
class CustomModelDeveloper:
def __init__(self, api_key):
self.developer = ModelVariantDeveloper(api_key)
def create_model_variant(self, base_model_id, variant_config):
"""Create custom model variant"""
variant = self.developer.create_variant(
base_model_id=base_model_id,
variant_config=variant_config
)
return variant
def train_variant(self, variant_id, training_data, training_config):
"""Train custom model variant"""
training_result = self.developer.train_variant(
variant_id=variant_id,
training_data=training_data,
training_config=training_config
)
return training_result
def evaluate_variant(self, variant_id, test_data):
"""Evaluate model variant performance"""
evaluation = self.developer.evaluate_variant(
variant_id=variant_id,
test_data=test_data
)
print("Model Evaluation:")
print(f" Accuracy: {evaluation.accuracy}")
print(f" Precision: {evaluation.precision}")
print(f" Recall: {evaluation.recall}")
print(f" F1 Score: {evaluation.f1_score}")
return evaluation
def deploy_variant(self, variant_id, environment="staging"):
"""Deploy model variant to environment"""
deployment = self.developer.deploy_variant(
variant_id=variant_id,
environment=environment
)
return deployment
# Usage
model_developer = CustomModelDeveloper("your_api_key")
# Create model variant
variant = model_developer.create_model_variant("base_model_123", {
"name": "Custom Data Processor",
"description": "Specialized model for data processing",
"modifications": {
"architecture": "enhanced_transformer",
"parameters": {
"attention_heads": 8,
"hidden_size": 512
}
}
})
# Train variant
training_result = model_developer.train_variant(
variant_id=variant.id,
training_data="path/to/training/data",
training_config={
"epochs": 10,
"batch_size": 32,
"learning_rate": 0.001
}
)
# Evaluate variant
evaluation = model_developer.evaluate_variant(
variant_id=variant.id,
test_data="path/to/test/data"
)
# Deploy variant
deployment = model_developer.deploy_variant(variant.id, "production")
Error Handling and Troubleshooting
Common Debugging Scenarios
Copy
from artos import TroubleshootingGuide
class Troubleshooter:
def __init__(self, api_key):
self.guide = TroubleshootingGuide(api_key)
def diagnose_execution_failure(self, execution_id):
"""Diagnose execution failure"""
diagnosis = self.guide.diagnose_failure(execution_id)
print("Failure Diagnosis:")
print(f" Root Cause: {diagnosis.root_cause}")
print(f" Error Type: {diagnosis.error_type}")
print(f" Affected Components: {diagnosis.affected_components}")
print(f" Suggested Fixes: {diagnosis.suggested_fixes}")
return diagnosis
def troubleshoot_performance_issues(self, workflow_id):
"""Troubleshoot performance issues"""
troubleshooting = self.guide.troubleshoot_performance(workflow_id)
print("Performance Troubleshooting:")
print(f" Issues Found: {troubleshooting.issues}")
print(f" Bottlenecks: {troubleshooting.bottlenecks}")
print(f" Recommendations: {troubleshooting.recommendations}")
return troubleshooting
def validate_workflow_configuration(self, workflow_id):
"""Validate workflow configuration"""
validation = self.guide.validate_configuration(workflow_id)
print("Configuration Validation:")
print(f" Valid: {validation.is_valid}")
print(f" Issues: {validation.issues}")
print(f" Warnings: {validation.warnings}")
return validation
# Usage
troubleshooter = Troubleshooter("your_api_key")
# Diagnose failure
diagnosis = troubleshooter.diagnose_execution_failure("execution_123")
# Troubleshoot performance
troubleshooting = troubleshooter.troubleshoot_performance_issues("workflow_123")
# Validate configuration
validation = troubleshooter.validate_workflow_configuration("workflow_123")
Error Recovery
Copy
from artos import ErrorRecovery
class RecoveryManager:
def __init__(self, api_key):
self.recovery = ErrorRecovery(api_key)
def recover_failed_execution(self, execution_id):
"""Attempt to recover failed execution"""
recovery_result = self.recovery.recover_execution(execution_id)
if recovery_result.success:
print(f"Recovery successful: {recovery_result.recovery_method}")
return recovery_result.recovered_execution
else:
print(f"Recovery failed: {recovery_result.failure_reason}")
return None
def implement_fallback_strategy(self, workflow_id, fallback_config):
"""Implement fallback strategy for workflow"""
return self.recovery.implement_fallback(
workflow_id=workflow_id,
fallback_config=fallback_config
)
def create_recovery_plan(self, workflow_id):
"""Create recovery plan for workflow"""
plan = self.recovery.create_plan(workflow_id)
print("Recovery Plan:")
print(f" Triggers: {plan.triggers}")
print(f" Actions: {plan.actions}")
print(f" Fallbacks: {plan.fallbacks}")
return plan
# Usage
recovery_manager = RecoveryManager("your_api_key")
# Recover failed execution
recovered_execution = recovery_manager.recover_failed_execution("execution_123")
# Implement fallback strategy
fallback = recovery_manager.implement_fallback_strategy("workflow_123", {
"trigger": "execution_failure",
"fallback_workflow": "backup_workflow_456",
"notification": True
})
# Create recovery plan
plan = recovery_manager.create_recovery_plan("workflow_123")
Best Practices
1. Debugging Best Practices
- Start Small: Test individual components before testing full workflows
- Use Breakpoints: Set strategic breakpoints to inspect intermediate results
- Log Everything: Implement comprehensive logging for debugging
- Reproduce Issues: Create minimal test cases to reproduce issues
- Document Solutions: Document solutions for common issues
2. Analytics Best Practices
- Define Clear Metrics: Define metrics that align with business objectives
- Monitor Trends: Track metrics over time to identify trends
- Set Alerts: Set up alerts for critical metrics
- Regular Reviews: Regularly review analytics to identify improvement opportunities
- A/B Testing: Use A/B testing to validate improvements
3. Performance Optimization Best Practices
- Profile First: Profile workflows to identify bottlenecks
- Optimize Incrementally: Make small optimizations and measure impact
- Test Thoroughly: Test optimizations thoroughly before deployment
- Monitor Impact: Monitor the impact of optimizations
- Document Changes: Document all optimization changes
4. Customization Best Practices
- Version Control: Use version control for all customizations
- Test in Staging: Test customizations in staging before production
- Document Dependencies: Document dependencies and requirements
- Monitor Performance: Monitor performance of custom components
- Plan for Updates: Plan for platform updates and their impact
5. Error Handling Best Practices
- Graceful Degradation: Implement graceful degradation for failures
- Retry Logic: Implement appropriate retry logic
- Fallback Strategies: Have fallback strategies for critical components
- Error Reporting: Implement comprehensive error reporting
- Recovery Procedures: Have documented recovery procedures